質問<777>2002/2/2
from=3年10組12番
「微積分」


実数t>1に対し、xy平面上の点
  
  O(0、0) P(1、1) Q(t、1/t)
を頂点とする三角形の面積をa(t)とし、線分OP、OQと双曲線xy=1
とで囲まれた部分の面積をb(t)とする。
このとき 
   
     c(t)=b(t)/a(t)

とおくと、関数c(t)はt>1においてつねに減少することを示せ。

という問題です。宜しくお願いします。 


お返事2002/2/6
from=武田


未解決問題に移しました。
誰かアドバイスをください。
CharlieBrownさんからアドバイスが届きました。感謝!!


お返事2002/2/12
from=CharlieBrown


計算を省略して、要点だけ記します。
        t^2-1
a(t) = -------
          2t
         t  dx
b(t) = ∫  ---- = logt
         1  x
となるので、問題は、
        b(t)     2tlogt
c(t) = ------ = --------
        a(t)      t^2-1

が、t>1で減少すること、
つまり、微分c'(t)がt>1で常に負であることを示せばよいわけです。

         -2(t^2+1)logt-2t^2+2
c'(t) = -----------------------
               (t^2-1)^2

ですから、この式がt>1で負になるかどうかを考察します。
分母は常に正ですから、分子の正負がそのままc'(t)の正負と一致します。
そこで、分子を改めてd(t)とおき、その正負を調べます。

d(t) = -2(t^2+1)logt-2t^2+2
を微分した
                       2
d'(t) = -4tlogt -6t - ---
                       t

は明らかにt>1で負であるから
d(t)はt>1で減少関数で、d(1) = 0なので、
確かに関数d(t)はt>1で常に負です。

よって関数c(t)はt>1でtの減少関数であることが示されました。