 
 
 
 
 
質問<3208>2006/5/25
aは正の定数。0°≦θ<360°とする。 このとき方程式cos2θ-acosθ+1-a^2=0の解の個数を求めるとき 微分を使った求め方を教えてください。 ★希望★完全解答★
お便り2006/6/16
from=BossF
x=cosθとおけば、
cos2θ-acosθ+1-a^2=2x^2-ax-a^2=f(x) となり
微分を使いf(x)の -1≦x≦1 における増減をaの値で場合分けして調べればできますが、
なぜ微分なんでしょうか?
単純に
cos2θ-acosθ+1-a^2=2(cosθ)^2-acosθ-a^2
                    =(2cosθ+a)(cosθ-a)
から解くほうが自然ですし
もしこれで減点する先生がいらっしゃったら
「心が狭い」と笑って差し上げたらいいのです。
★解答です★
 
 
 
 
