 
 
 
 
 
質問<3>98/5/5
from=こうすけ
「数列に関する質問」
- k×k! の1からnまでの和を教えてください。
- k(k+1)×5^k×Ak の1からnまでの和が、2(n+0.25)^2に
等しいとき,Anをnの式でどうやって表すのでしょうか。よろしくお願いします。
お返事98/5/16
from=武田
- Σk×k!=Σ(k+1)×k!-Σk!=Σ(k+1)!-Σk!
 =(2!-1!)+(3!-2!)+(4!-3!)+…+{(n+1)!-n!}
 =(n+1)!-1!=(n+1)!-1
 答え Σk×k!=(n+1)!-1
 
- 上と同様にやる。
 (nまで  )Σk(k+1)×5k×Ak=2(n+0.25)2……(1)
 (n-1まで)Σk(k+1)×5k×Ak=2(n-1+0.25)2…(2)
 (1)-(2)より
 n(n+1)×5n×An=2(n+0.25)2-2(n-1+0.25)2
 =2{(n+0.25)+(n-0.75)}{(n+0.25)-(n-0.75)}
 =2(2n-0.5)×(1)=4n-1
 答え An=(4n-1)/{n(n+1)×5n}
 ただし、n>1とする。
以上ですが、苦労しました。
 
 
 
 
