 
 
 
 
 
質問<229>2000/2/18
積分の質問に答えてくれてありがとうございます。今回もよ ろしくおねがいします。logや三角関数の積分で、ややこし い問題が多く、なかなか解けない問題が多く困ってます。 次の関数を積分せよ。 1、(1÷x)logx 2、cosx^5sinx 3、e^x÷(e^x+1) 4、x+1÷cos^3x
お返事2000/2/19
from=武田
問1
∫(1/x)logxdx
logx=tとおくと、(1/x)dx=dt
∫(1/x)logxdx=∫tdt=t2/2+C
 (logx)2
=─────+C ……(答)
   2
問2
∫cos5x・sinxdx
cosx=tとおくと、-sinxdx=dt
∫cos5x・sinxdx=∫t5(-1)dt
=-∫t5dt=-t6/6+C
  cos6x
=-────+C ……(答)
   6
問3
  ex
∫────dx
 ex+1
ex=tとおくと、exdx=dt
  ex       dt
∫────dx=∫────=log|t+1|+C
 ex+1     t+1
=log|ex+1|+C ……(答)
問4
     1      x2
∫(x+────)dx=──+P
    cos3x     2
    1        1    1
P=∫───dx=∫√(───)・───dx
   cos3x      cos2x  cos2x
             1
 =∫√(1+tan2x)・───dx
            cos2x
           1
tanx=tとおくと、────dx=dt
          cos2x
P=∫√(1+t2)dt=∫√(t2+1)dt
 =(1/2){t√(t2+1)+log(t+√(t2+1))}+C
  1
 =─{tanx√(tan2x+1)+log(tanx+√(tan2x+1))}+C
  2
  1      1        1
 =─{tanx・───+log(tanx+───)}+C
  2     cosx       cosx
     1
∫(x+───)dx
    cos3x
 x2 1      1         1
=─+─{tanx・───+log(tanx+───)}+C……(答)
 2 2     cosx       cosx
 
 
 
 
