 
 
 
 
 
質問<3763>2009/11/28
水滴を球形とみなして、完全に蒸発してなくなる時刻を求める問題です。
条件として、
・水滴は表面積に比例して蒸発する。
・t=0で半径はr0
・t=t1(>0)で半径はr1(<r0)
があります。
解答解説には
①時刻tでの水滴の半径をr(t)とし、tからt+⊿tの間に減った量は(4π/3){r^3(t)-r^3(t+⊿t)}
②蒸発した量は、4kπr^2(t)⊿t
③方程式はdr/dt=-k
とあるのですが、この③がなぜ出てくるのか分かりません。
私が計算すると、題意から①=②なので
(4π/3){r^3(t)-r^3(t+⊿t)}=4kπr^2(t)⊿t
両辺を(4π/3)⊿tで割って
{r^3(t)-r^3(t+⊿t)}/⊿t=3kr^2(t)
⊿t→0の極限をとって
-dr/dt=3kr^2(t)
dr/dt=-3kr^2(t)
となり、-3r^2(t)が残ってしまいます。
どこがおかしいのでしょうか?
教えて頂ければ助かります。
★希望★完全解答★
お便り2009/11/29
from=cametan
ふっっっめいりょうな質問ですね。
実際問題、こう言う場合は問題文全部転載した方が良いです。貴方の「解釈」聞いても
しょーがない、んですよ。
別に「考え方」を述べるのが悪い事、って言ってるんじゃないです。そーじゃなくって、
それも必要ですが、問題文と照らし合わせ無いと判断出来ないんですよ。
そもそも、これは物理なのか、あるいは数学として訊いてるのか全然分からないから、
です。
例えば、ですね。
>水滴は表面積に比例して蒸発する。
なんてのは条件でも何でも無いですよ。
時間微分をダッシュ(')で表現すると、球の体積をV、球の半径をrとすれば、球の体積が
V = 4π/3*r^3
とすれば、
V' = 4π*r^2*r'
になります。球の表面積が
A = 4π*r^2
である以上、
V' = A * r'
と記述できるんで、こんなの「数学的操作による帰結」なんで条件でも何でもない、です。
数学的に天下りな計算結果が出るんで「当たり前」なんですよ。
分かりますか?
つまり、r'が何なのか、ってのが問われるわけなんですけど、「数学的な観点」で言うと
「何でもアリ」ですよね。別に指数関数でも構いませんし、下手すれば三角関数でも良い
わけです。
従って、本当に必要な「条件」ってのは、r'が「何なのか」?それが分からんと解きようが
ない、んですよ。少なくとも、貴方が示した条件では、「rの時間微分が定数である」と
言う条件は見当たりません。
そうすると、
>解答解説には
で、r'=-kとしてるなら、「r'が定数である」と言う条件が、どっか問題文に書いてなきゃ
「問題として成り立たない」わけです。
分かりますかね?
これだと、不明瞭過ぎて、何とも答えようがありませんね。
>両辺を(4π/3)⊿tで割って
>{r^3(t)-r^3(t+⊿t)}/⊿t=3kr^2(t)
>⊿t→0の極限をとって
>-dr/dt=3kr^2(t)
>dr/dt=-3kr^2(t)
>となり
ならんでしょ(笑)。
r(t+Δt)/ΔtのΔt→0の極限取ってdr/dtだ、っつーのならまだ分かりますが、そもそも
分母はrがtの関数だとしても「3乗」ですよ?半径r「そのものの」時間毎の増加率(ある
いは減少率)を計算してるわけでも何でも無いでしょう。
従って、上の3行目と4行目の論理は「トビ過ぎて」います。計算が破綻してますね。
 
 
 
 
